


WHAT IS SEARCHING?

Searching is the process of finding a given value position in a list of 

values.

It decides whether a search key is present in the data or not.

It is the algorithmic process of finding a particular item in a 

collection of items.

It can be done on internal data structure or on external data 

structure.

Searching Techniques

To search an element in a given array, it can be done in following 

ways:

1. Sequential Search

2. Binary Search



SEQUENTIAL SEARCH

 Sequential search is also called as Linear Search.

 Sequential search starts at the beginning of the list and 

checks every element of the list.

 It is a basic and simple search algorithm.

 Sequential search compares the element with all the other 

elements given in the list. If the element is matched, it returns 

the value index, else it returns -1.



The above figure shows how sequential search

works. It searches an element or value from

an array till the desired element or value is not

found. If we search the element 25, it will go

step by step in a sequence order. It searches

in a sequence order. Sequential search is

applied on the unsorted or unordered list

when there are fewer elements in a list.



A simple approach is to do linear search, i.e

• Start from the leftmost element of arr[] and one by 

one compare x with each element of arr[]

• If x matches with an element, return the index.

• If x doesn’t match with any of elements, return -1.





ANALYSIS OF LINEAR SEARCH

• A linear search scans one item at a time, without 

jumping to any item .

• The worst case complexity is O(n), sometimes known 

an O(n) search

• Time taken to search elements keep increasing as the 

number of elements are increased.



WORST CASE COMPLEXITY IN LINEAR SEARCH

In the worst case analysis, we calculate upper bound on

running time of an algorithm. We must know the case

that causes maximum number of operations to be

executed. For Linear Search, the worst case happens

when the element to be searched (x in the above

code) is not present in the array. When x is not

present, the search() functions compares it with all

the elements of arr[] one by one. Therefore, the worst

case time complexity of linear search would be Θ(n).



AVERAGE CASE COMPLEXITY IN LINEAR SEARCH

In average case analysis, we take all possible inputs and calculate

computing time for all of the inputs. Sum all the calculated

values and divide the sum by total number of inputs. We must

know (or predict) distribution of cases. For the linear search

problem, let us assume that all cases are uniformly

distributed (including the case of x not being present in array). So

we sum all the cases and divide the sum by (n+1). Following is

the value of average case time complexity.

http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)


BEST CASE ANALYSIS (BOGUS)

 In the best case analysis, we calculate lower bound on running time of an

algorithm.

 We must know the case that causes minimum number of operations to

be executed.

 In the linear search problem, the best case occurs when x is present at

the first location. The number of operations in the best case is constant

(not dependent on n). So time complexity in the best case would be Θ(1).

 Most of the times, we do worst case analysis to analyze algorithms. In

the worst analysis, we guarantee an upper bound on the running time of

an algorithm which is good information.

 The average case analysis is not easy to do in most of the practical cases

and it is rarely done. In the average case analysis, we must know (or

predict) the mathematical distribution of all possible inputs.

 The Best Case analysis is bogus. Guaranteeing a lower bound on an

algorithm doesn’t provide any information as in the worst case, an

algorithm may take years to run.



BINARY SEARCH

 Binary Search is used for searching an element in a sorted array.

 It is a fast search algorithm with run-time complexity of O(log n).

 Binary search works on the principle of divide and conquer.

 This searching technique looks for a particular element by

comparing the middle most element of the collection.

 It is useful when there are large number of elements in an array.

The above array is sorted in ascending order. As we know binary search

is applied on sorted lists only for fast searching.



EXAMPLE

if searching an element 25 

in the 7-element array, 

following figure shows 

how binary search 

works:

Binary searching starts with 

middle element. If the 

element is equal to the 

element that we are 

searching then return true. If 

the element is less than 

then move to the right of the 

list or if the element is 

greater than then move to 

the left of the list. Repeat 

this, till you find an element.



Binary Search: Search a sorted array by repeatedly

dividing the search interval in half. Begin with an

interval covering the whole array. If the value of the

search key is less than the item in the middle of the

interval, narrow the interval to the lower half.

Otherwise narrow it to the upper half. Repeatedly

check until the value is found or the interval is empty.



WORKING

 We basically ignore half of the elements just after one 

comparison.

 Compare x with the middle element.

 If x matches with middle element, we return the mid index.

 Else If x is greater than the mid element, then x can only lie in 

right half subarray after the mid element. So we recur for right 

half.

 Else (x is smaller) recur for the left half.







ANAYSIS OF BINARY SEARCH

 A binary search however, cut down your search to half 

as soon as you find middle of a sorted list.

 The middle element is looked to check if it is greater 

than or less than the value to be searched.

 Accordingly, search is done to either half of the given 

list





IMPORTANT DIFFERENCES

 Input data needs to be sorted in Binary Search and 

not in Linear Search

 Linear search does the sequential access whereas 

Binary search access data randomly.

 Time complexity of linear search -O(n) , Binary search 

has time complexity O(log n).

 Linear search performs equality comparisons and 

Binary search performs ordering comparisons



Linear Search to find the element “J” in a given sorted list from A-X

Binary Search to find the element “J” in a given sorted list from A-X

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/Linear.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/Linear.png


SKIP LIST

https://www.thecrazyprogrammer.com/2014/12/skip-list-data-structure.html

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/skiplists.pdf

https://www.geeksforgeeks.org/skip-list/

https://www.thecrazyprogrammer.com/2014/12/skip-list-data-structure.html
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/skiplists.pdf


LINKED LISTS BENEFITS & DRAWBACKS

• Benefits:

- Easy to insert & delete in O(1) time

- Don’t need to estimate total memory needed

• Drawbacks:

- Hard to search in less than O(n) time

(binary search doesn’t work, eg.)

- Hard to jump to the middle

• Skip Lists:

- fix these drawbacks

- good data structure for a dictionary ADT



STRUCTURE OF SKIP LIST

A skip list is built up of layers. The lowest layer (i.e. bottom layer) is an ordinary 

ordered linked list. The higher layers are like ‘express lane’ where the nodes are 

skipped



SEARCHING PROCESS

When an element is tried to search, the search begins at the head element of the top 

list. It proceeds horizontally until the current element is greater than or equal to 

the target. If current element and target are matched, it means they are equal 

and search gets finished.

If the current element is greater than target, the search goes on and reaches to the 

end of the linked list, the procedure is repeated after returning to the previous 

element and the search reaches to the next lower list (vertically).



we create multiple layers so that we can skip some nodes. See the following example 

list with 16 nodes and two layers. The upper layer works as an “express lane” 

which connects only main outer stations, and the lower layer works as a “normal 

lane” which connects every station. Suppose we want to search for 50, we start 

from first node of “express lane” and keep moving on “express lane” till we find a 

node whose next is greater than 50. Once we find such a node (30 is the node in 

following example) on “express lane”, we move to “normal lane” using pointer 

from this node, and linearly search for 50 on “normal lane”. 



In following example, we start from 30 on “normal lane” and with linear search, we 

find 50.


